Brain tumors: molecular biology and targeted therapies
M. E. Hegi, A. Murat, W. L. Lambiv & R. Stupp

1Laboratory of Tumor Biology and Genetics, Department of Neurosurgery, University Hospital Lausanne (CHUV), Lausanne; 2National Center of Competence in Research (NCCR) Molecular Oncology, Swiss Institute of Experimental Cancer Research (ISREC), Epalinges; 3Multidisciplinary Oncology Center, University Hospital Lausanne (CHUV), Lausanne, Switzerland

Introduction
Glioblastoma is the most common and most malignant form of primary brain tumors in adults. It frequently develops de novo but may also evolve over years from a lower grade astrocytoma [1]. Recent combined modality treatments have led to some improvement in survival. However, most patients will still succumb to their disease (median survival to 15 months and 2-year survival rates of 26%) [2, 3].

Correlative molecular studies and animal models have identified numerous molecular alterations and biological processes involved in initiation and progression of glioma. However, the underlying molecular mechanisms and pathways involved are complex and remain poorly understood. The accumulation of multiple aberrations in regulatory processes enables tumors to bypass the effects of many of the available therapies. Molecular alterations underlying such mechanisms comprise aberrations on the genetic level, e.g. point mutations in key genes or respective amplifications and deletions [1], or are a consequence of epigenetic modifications. The latter include aberrant methylation of CpG islands in the regulatory sequence of genes, as well as changes in chromatin structure mediated by mechanisms such as histone acetylation. Hypermethylation of CpG islands in the promoter of genes leads to loss of expression (inactivation), while loss of methylation in normally silenced genes may cause inappropriate expression (e.g. IGFB2 gene), both with tumor promoting effects [4, 5].

Individual molecular tumor profiles are heterogeneous implying that different therapeutic approaches will be necessary for successful personalized treatments.

A first step towards the design of novel therapies is the identification and better understanding of relevant molecular mechanisms driving the aggressive biological behavior that subsequently may be targeted in respective treatment approaches. Hanahan and Weinberg [6] categorized the principle biological requirements for tumor formation as follows: (i) self sufficiency in growth signals, (ii) insensitivity to anti-growth signals, (iii) limitless replicative potential, (iv) sustained angiogenesis, (v) evasion from apoptosis and (vi) tumor infiltration and metastasis. The molecular aberrations conferring these properties in tumors are diverse, although they show some characteristic tumor type and malignancy grade dependent patterns. Molecular tumor profiles may become helpful tools to device therapeutic strategies aiming for individually tailored treatments.

Molecular Profiles Indicate Biological Features Differeniating Glioma Subtype and Tumor Grade
Glioma subtypes exhibit distinct molecular profiles (Figure 1) [1, 7–9]. A hallmark of primary glioblastoma is the amplification of epidermal growth factor receptor gene (EGFR) that is often associated with deletion of the CDKN2A ^{p16^{ink4A}} gene encoding two tumor suppressors, p16 and inhibitor of CDK4 and p14ARF a negative regulator of MDM2. These two aberrations are mutually exclusive with mutations in the ^{TP53} tumor suppressor gene that represent a hallmark in the evolution of secondary glioblastoma [10, 11]. Primary and secondary glioblastoma, although histologically undistinguishable, are distinct disease entities that occur in different age groups. Childhood glioblastoma, frequently situated in the brain stem, form a third pathogenetically distinct group from their adult counterparts [12, 13].

Oligodendroglioma, characterized by combined loss of heterozygosity on chromosomes 1p and 19q, rarely exhibit mutations in the ^{TP53} gene or amplification of ^{EGFR}, but in the majority have an epigenetically inactivated O6-methylguaninedNA methyltransferase (^{MGMT}) repair gene that may explain their particular sensitivity to alkylating agent therapy.

The distinct genomic aberrations translate into characteristic differences of global gene expression profiles of glioma subtypes (Figure 2) [14, 15]. Interestingly, differential gene expression profiles distinguishing primary glioblastoma from low grade astrocytoma, and surprisingly also from secondary glioblastoma identified a group of correlated genes related to angiogenesis and hypoxia. This may guide the use of anti-angiogenic treatment strategies [14].

Most glioblastoma (80%) exhibit inactivation of the ^{p14^{ARF}}/TP53/MDM2 pathway concurrent with abnormalities in G1transition control. The latter is a consequence of aberration of either ^{RBB1}, ^{CDK4}, ^{CDKN2A} or ^{CDKN2B} genes involved in the same pathway of cell cycle control [16]. Associations of genetic aberrations such as ^{EGFR} amplification and concurrent deletion of the ^{CDKN2A} gene locus [7] are suggestive of a cooperative effect. This hypothesis is further supported by in vivo and in vitro models, and may have relevant consequences for resistance to respective targeted treatments [17, 18].

As molecular data on glioma accumulates, attempts are made to identify predictors of prognosis and response to therapy.
Recent comprehensive molecular profiling efforts provided evidence for the existence of molecular subtypes of glioblastoma that may differ in their clinical behavior [19–28]. Several prognostic factors emerged from these and other retrospective studies. However, the insights gained will require validation in independent data sets and prospective clinical trials to determine their predictive value for response to specific therapeutic interventions.

Figure 1. Distinct pathogenetic pathways characterize malignant progression of gliomas. A hallmark of primary glioblastoma is the amplification of the \(EGFR \) that is often associated with deletion of the \(CDKN2A \) gene encoding two tumor suppressors. These aberrations are mutually exclusive with mutations in the \(TP53 \) tumor suppressor gene that represent a hallmark in the evolution of secondary glioblastoma. Primary and secondary glioblastoma occur in different age groups. Combined loss of heterozygosity on chromosomes 1p and 19q are characteristic for oligodendroglioma. They rarely exhibit mutations in the \(TP53 \) gene or amplification of the \(EGFR \). Information is compiled from the literature in particular from the [1, 7–9, 62].

Figure 2. Gene expression profiles differentiate glioma subtypes. MDS (multidimensional scaling) based on overall gene expression (1185 genes) of 51 astrocytic gliomas. The color code indicates the tumor subtype according to histological and clinical criteria. LGA, low grade astrocytoma; ScGBM, secondary glioblastoma; PrGBM, primary glioblastoma. With permission from [19].

Recent comprehensive molecular profiling efforts provided evidence for the existence of molecular subtypes of glioblastoma that may differ in their clinical behavior [19–28]. Several prognostic factors emerged from these and other retrospective studies. However, the insights gained will require validation in independent data sets and prospective clinical trials to determine their predictive value for response to specific therapeutic interventions.

prognostic molecular markers improve diagnostic precision

Tumor histology and malignancy grade guide treatment decisions while taking into account clinical parameters such as age, performance status and extent of tumor resection, are all important prognostic factors. Identification of molecular prognostic markers will be crucial for the design of future trials. However, many markers may just reflect a different natural history and not necessarily contribute to decisions for individual patient management. Nevertheless, molecular markers may greatly improve diagnostic precision and characterize tumor entities with distinct biological behavior.

The best example is the identification of oligodendroglioma with loss of heterozygosity on chromosomes 1p and 19q (LOH 1p/19q). This tumor type is associated with high response rates to chemotherapy and a prolonged survival [8, 29].

Recently, the outcome of anaplastic oligoastrocytoma and oligodendroglioma treated within two independent randomized trials with a similar design was reported by the Radiotherapy Oncology Group (RTOG) and the European Organization of Research and Treatment of Cancer (EORTC) [30, 31]. In these trials PCV-chemotherapy was administered either before (RTOG) or after radiotherapy (EORTC), respectively. Combined losses on chromosomes 1p and 19q represented a favorable prognostic marker and characterized a distinct glioma entity independent of whether initial treatment included PCV chemotherapy or not. Patients with oligodendroglioma with LOH 1p/19q had a much better outcome than patients without LOH 1p/19q. Chemotherapy prolonged progression-free survival in all patients but failed to improve overall survival, even the subset of patients considered the most sensitive to...
chemotherapy with LOH 1p/19q, Hence we need to conclude that LOH 1p/19q is primarily a prognostic factor describing a distinct pathologic entity. Its determination improves the accuracy of morphologic diagnosis overcoming subjective interobserver differences that have severely limited comparability between institutions and treatments [32]. Consequently, the ongoing European and Canadian trial (EORTC 22033/26033) for low grade glioma stratifies the patients for 1p deletions in the tumor.

targeted treatments

As pathogenetic factors are diverse, multiple treatment strategies are possible. The integration of clinical and molecular information has provided a list of mechanisms that may be targeted. Aspects of selected treatment strategies are highlighted below. Otherwise reference is given to recent comprehensive reviews of the respective fields.

DNA-repair-driven therapeutics

Epigenetic silencing of the MGMT gene encoding a DNA repair enzyme was recently found to be of predictive value for benefit from the alkylating agent temozolomide (TMZ) in a randomized clinical trial for newly diagnosed glioblastoma [33]. The trial had shown that the addition of concomitant and adjuvant (maintenance) TMZ to radiotherapy (RT) improved the 2-year survival rate from 10% in the RT group to 26% for TMZ/RT, setting a new standard of care for glioblastoma patients [3]. Subsequent analysis of the patient’s tumor tissues revealed that benefit of the addition of TMZ chemotherapy was basically confined to patients whose tumors had a methylated MGMT promoter [33]. At 2 years, 46% of the patients treated with TMZ/RT and whose tumors were MGMT methylated survived, compared to only 14% for the patients with unmethylated tumors. High expression of the MGMT repair enzyme is known to contribute to the treatment effect of alkylating agents by rapidly repairing O6-methyl guanine, the biologically most important lesion for triggering a cytotoxic response [34, 35]. Since the MGMT protein is a suicide repair enzyme that gets inactivated when the alkyl group from the lesion is transferred to the active site of the enzyme, depletion of the enzyme from the tumor cells may be used as a therapeutic strategy to improve sensitivity to alkylating agents. One approach uses a non-cytotoxic substrate of MGMT, such as O6-BG (O6-benzylguanine) or PaTrin-2 [O(6)-(4-bromothenyl)guanine] [36] that may deplete cells of the repair enzyme. Phase I clinical trials have evaluated O6-BG in association with TMZ or carmustine (BCNU) [37, 38]. An alternative strategy is to use an intensified, dose-dense TMZ administration schedule aiming at depleting MGMT by continued exposure. This approach is currently undergoing clinical testing within a large randomized international Intergroup trial (RTOG0525/EORTC26052-22053) [39]. Patients are stratified prior to randomization by their MGMT methylation status. [For additional information, see http://www.rtog.org or http://www.eortc.org or contact the study chairs: Mark Gilbert (mrgilbert@mdanderson.org) or Roger Stupp (roger.stupp@chuv.ch).] The cytotoxic property of the O6-methyl guanine lesion that persists in the DNA in absence of functional MGMT, depends on an intact mismatch repair (MMR) system that eventually triggers the signaling pathways leading to cell death [40, 41]. Thus, best response is expected in patients whose tumor is deficient for MGMT, but proficient for MMR. In adult glioblastoma there is no evidence for lack of MMR, in contrast to pediatric glioblastoma [13]. However, additional resistance factors exist, and may include abrogation of apoptosis pathways and deregulated survival signaling that need to be identified and subsequently overcome.

Other approaches aim at rescuing or increasing sensitivity to alkylating agent therapy by inactivating base excision repair (BER) [42]. Approaches have been to use methoxyamine that inhibits apurinic/apyrimidinic endonuclease (APE)-mediated cleavage by binding to AP-sites; while inhibition of Poly(ADP-ribose)polymerase-1 (PARP) impairs the recruitment of BER proteins [43]. This approach has been effective in breast cancer models with either defective BRCA1 or BRCA2 that are both involved in repair of double strand breaks [44]. In glioblastoma cell lines or respective xenograft models PARP inhibitors proved to be particularly effective when MMR was deficient [45, 46]. The redundancy in the targeted pathway, in this case repair, has to be overcome in order to achieve a successful treatment response. Hence, targeting repair processes might be a promising strategy for improving efficacy of alkylating agent chemotherapy.

small molecule inhibitors

Over the last years small molecule drugs have been developed specifically inhibiting aberrantly activated signaling pathways. These pathways may not only be activated in the tumor cells themselves, but also in the tumor stroma and tumor-associated endothelial cells [47]. Thus targeting of respective pathways operative in different compartments, or inhibitors of multiple tyrosine kinases, such as PTK-787, may have synergistic effects and thereby enhance treatment efficacy. Evaluation of these small molecule drugs, including peptides, polypeptides and antibodies specifically targeting signaling pathways aberrantly activated in gliomas will be central to future clinical trials (recently reviewed in [48]) (Figure 3). Based on molecular profiles of glioblastoma, the EGFR- and PI3K-pathway and their downstream partners represent particularly attractive targets [49, 50]. Promising are also strategies that particularly aim at angiogenesis [47] such as inhibitors of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor (VEGFR), or inhibitors of integrins [51]. However, based on modest responses in trials with single agents, and encouraging synergistic effects in preclinical studies, combination treatments are warranted, combining cytotoxic agents plus one or several targeted drugs (or molecules targeting multiple pathways) [52, 53]. Many new targeted drugs, or combinations thereof, are currently tested or have been tested in phase I or II trials [53, 54]. One limitation in the clinic is the frequent interaction with the commonly used enzyme-inducing anti-epileptic drugs.

Since these strategies aim (mainly) at specific molecular targets it is mandatory to establish molecular profiles of the
tumors for evaluation of correlations with treatment response. Since the EGFR represents a particularly attractive target it has been extensively evaluated in malignant glioma. Retrospective correlative studies suggested that response to EGFR tyrosine kinase inhibitors did not depend solely on the presence of the target, an activated EGFR [54]. Mellinghof et al. [55] proposed that co-expression of EGFRvIII mutant and PTEN in the tumor were crucial for response to EGFR inhibitors, while in a study by Haas Kogan et al. [56] none of the responders expressed EGFRvIII, but the response was associated with EGFR amplification and expression, and low levels of PKB/Akt phosphorylation. Of note, most of these molecular studies were performed on tumor tissue obtained at the initial diagnosis and may not reflect the molecular pattern at recurrence after multiple prior treatment. Molecular analysis of few tumor tissue samples, available after resection performed during and after prior therapy with the EGFR inhibitors (erlotinib or gefitinib), seemed to suggest inefficient inhibition of EGFR phosphorylation [57]. Thus, the molecular signature relevant for response to this treatment remains to be elucidated and will need more in-depth molecular analysis to elucidate the molecular mechanisms responsible for these unexpected, additional treatment resistances.

It follows that prospective trials for targeted treatments need to be designed with an integrated translational research component allowing for future molecular selection of patients potentially benefiting from a certain agent or treatment regimen and identifying the relevant pathways that may need to be targeted in addition, in order to improve antitumor activity. Thus, common to all ongoing or planned trials is the absolute necessity of availability of tumor material for molecular profiling (paraffin-embedded or ideally fresh-frozen) in order to establish molecular criteria for the choice of individually tailored treatment approaches in the future.

outlook: gene signature guide drug choice

Novel approaches have recently been described identifying gene expression signatures indicative of oncogenic pathways that may be specifically targeted for therapy [58, 59]. Using this
Tyrosine kinase inhibitors

EGFR
EGFR
EGFR
EGFR
EGFR & ErbB-2
EGFR & VEGFR
VEGFR & EGFR
PDGFR & c-kit
PDGFR & VEGFR, c-kit, Flt-3
PDGFR & VEGFR, c-kit, Flt-3
PDGFR
PDGFR
Raf, VEGFRs, PDGFR
PDGFR & VEGFR
Kinase inhibitors
MEK
MEK
MEK
VEGF inhibitors
Farnesyl transferase inhibitors
Tipifarnib
Lonafarnib
nTOR inhibitors
Temsirolimus
Everolimus
Sirolimus
Histone deacetylase inhibitors
Depsipeptide
Suberoylanilide
DNA repair
MGMT
MGMT
PARP
BER
Other
integrins avb3 & avb5
Hsp90
Proteasome inhibitor
PKC inhibitor

Table 1. Targeted treatments

<table>
<thead>
<tr>
<th>Target Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gefitinib</td>
<td>ZD1839, Iressa</td>
</tr>
<tr>
<td>Erlotinib</td>
<td>OSI-774, Tarceva</td>
</tr>
<tr>
<td>Cetuximab</td>
<td>C225, Erbitux</td>
</tr>
<tr>
<td>Lapatinib</td>
<td>GW-572016</td>
</tr>
<tr>
<td>AEE788</td>
<td></td>
</tr>
<tr>
<td>ZD6474</td>
<td></td>
</tr>
<tr>
<td>Iatinib</td>
<td>ST1571, Gleevec</td>
</tr>
<tr>
<td>PTK787</td>
<td></td>
</tr>
<tr>
<td>SU11248</td>
<td></td>
</tr>
<tr>
<td>AG-013736</td>
<td></td>
</tr>
<tr>
<td>SU101</td>
<td></td>
</tr>
<tr>
<td>MLN518</td>
<td></td>
</tr>
<tr>
<td>Sorafenib</td>
<td>Bay 43–9006</td>
</tr>
<tr>
<td>AZD2171</td>
<td></td>
</tr>
<tr>
<td>CL-1040</td>
<td></td>
</tr>
<tr>
<td>UO126</td>
<td></td>
</tr>
<tr>
<td>PD0325901</td>
<td></td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>Avastin</td>
</tr>
<tr>
<td>VEGF Trap</td>
<td></td>
</tr>
<tr>
<td>Pegabtanib</td>
<td></td>
</tr>
<tr>
<td>R115777, Zarnestra</td>
<td></td>
</tr>
<tr>
<td>SCH66336, Sarasar</td>
<td></td>
</tr>
<tr>
<td>CCI-779</td>
<td></td>
</tr>
<tr>
<td>RAD001</td>
<td></td>
</tr>
<tr>
<td>Rapimmune, Wyeth</td>
<td></td>
</tr>
<tr>
<td>AP23573</td>
<td></td>
</tr>
<tr>
<td>FK228</td>
<td></td>
</tr>
<tr>
<td>O(^{\text{6}})-benzyl guanine</td>
<td></td>
</tr>
<tr>
<td>O(6)- (4-bromothenyl)guanine</td>
<td></td>
</tr>
<tr>
<td>INO-1001</td>
<td></td>
</tr>
<tr>
<td>methoxyamine</td>
<td></td>
</tr>
<tr>
<td>Cilengitide</td>
<td>EMD 121974</td>
</tr>
<tr>
<td>17-allylamino-geldanamycin</td>
<td></td>
</tr>
<tr>
<td>Bortezomib</td>
<td>PS-341, Velcade</td>
</tr>
<tr>
<td>Tamoxifen</td>
<td></td>
</tr>
</tbody>
</table>

*Compilation of the literature, references as mentioned in the text, in particular the review by Kesari et al. [48].

References

